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Abstract

We revisit the model proposed by Gollier and Muermann (see Gol-

lier, C. and A. Muermann, 2010, Optimal choice and beliefs with ex-

ante savoring and ex-post disappointment, Management Sci., 56, 1272-

1284, hereafter GM). In GM, for a given lottery, agents form antici-

pated expected payo↵s and the set of possible anticipations is assumed

to be exogenously fixed, independently of the characteristics of the lot-

tery itself. We rather propose endogenous bounds for the set of possible

anticipations. This permits to compare in a consistent manner lotter-

ies with di↵erent supports, to evaluate a lottery without introducing

a “framing e↵ect” and to revisit the portfolio choice problem. We ob-

tain new conclusions and interesting insights. Our extended model can

rationalize a variety of empirically observed puzzles like a positive de-

mand for assets with negative expected returns, preference for skewed

returns and under-diversification of portfolios.
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1 Introduction

Gollier and Muermann (2010) (hereafter GM) propose a structural model of

subjective belief formation in which beliefs solve a trade-o↵ between ex-ante

savoring and ex-post disappointment. Models of subjective beliefs (with

possible cognitive dissonance) go back to Akerlof and Dickens (1982). The

GM model is in line with this literature and more precisely builds on the

optimal beliefs approach introduced by Brunnermeier and Parker (2005) and

Brunnermeier et al. (2007), in which the agents form beliefs endogenously

and derive ex-ante felicity from expectations of future pleasures; with such

an approach, optimal beliefs balance the benefits of higher expectations

against the costs of worse decision making and are necessarily biased towards

optimism. GM model also builds on the disappointment theory, introduced

by Bell (1985), Loomes and Sugden (1986) and Gul (1991), for which the

felicity associated to a given uncertain outcome increases with the di↵erence

between the realization and the expectation. In GM model, agents form an

anticipated expected payo↵ and optimal beliefs realize the best trade-o↵

between ex-ante savoring and ex-post disappointment: high expectations

lead to more ex-ante savoring at the cost of being disappointed ex-post

while low expectations lead to the benefits of elation ex-post at the cost

of less savoring ex-ante. Depending on the relative weight of the ex-ante

and ex-post criteria, the optimal belief might be optimistic or pessimistic,

leading to a quite realistic framework to model decision making and to think

about endogenous heterogeneous beliefs.

GM derive their results for a set of lotteries with possibly di↵erent sup-

ports but with fixed, common set of possible payo↵s. Moreover, for a given

lottery, the set of possible anticipated expected payo↵s is independent of
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the characteristics of the objective distribution of the lottery itself and,

in particular, of its support1. As an illustration, the lottery that pays 0

with probability 1
/2, 100 with probability 1

/2 and 200 with probability 0

denoted by ({0, 100, 200}, (1/2, 1/2, 0)) may admit in the GM framework 150

or 200 as a possible anticipated expected payo↵ even though we know for

sure that the payo↵ will be less than 100. The same lottery might be de-

scribed in reduced form and with a smaller set of possible outcomes by

({0, 100}, (1/2, 1/2)). With this new description over a smaller set of possible

outcomes, the anticipated expected payo↵s are constrained to range between

0 and 100. Therefore, possible anticipated expected payo↵s and resulting

welfare evaluations strongly depend upon the frame and, in particular, on

the set of 0-probability possible outcomes that can be added to the lottery

support. A sure payo↵ equal to 100 might then lead to a di↵erent antic-

ipated expected payo↵ depending on the description of the set of possible

outcomes.

In this note, we revisit GM model. Our extended model has the following

features. First, in our model, the optimal anticipated expected payo↵ is

equal to the sure payo↵ when there is no uncertainty: in our model, if I

get 100 for sure, then I can only believe that I will get 100. Second, in

our setting, as in Brunnermeier and Parker (2005), “in order to believe that

something is possible, then it must be possible”: in the case of a lottery

yielding 1 or 2 with equal probabilities, an agent can believe that he will

win 1 or that he will win 2 or that he will win on average any value between 1

and 2 but he cannot believe that he will win some value outside [1, 2]. Third

and foremost, the welfare level of a given lottery does not depend on the set

of 0-probability possible outcomes that can be added to the lottery support

and there is then no framing e↵ect. Fourth and as a consequence, as far

as the portfolio choice problem is concerned, the set of possible anticipated

1Support here means the set of outcomes with positive probability.
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expected payo↵s is not constrained by exogenous bounds as in GM, but

depends upon the level of investment in the risky asset, which seems more

natural, since this level modifies the support of the possible realizations.

Our extended model leads to new conclusions and interesting insights,

which shed light on a variety of puzzles in decision theory and in portfolio

choice literature.

First, it appears that the preference functional is not necessarily compat-

ible with first-degree and second-degree stochastic dominance. The rationale

for this result is that an increase in risk may enlarge the support and may

enable the agent to form an optimal anticipated expected payo↵ which is

more favorable in terms of the savoring and disappointment trade-o↵ and

thereby may lead to a higher welfare. We provide and discuss an additional

condition on the preference functional to restore compatibility with first-

degree stochastic dominance: the weight on savoring must be large enough

with respect to the weight on disappointment. This condition is consistent

with Gneezy et al. (2006), who underline that pure disappointment models

permit violations of FSD.

Second, it may be optimal to invest in a risky asset with an expected

excess return equal to zero. In our revisited model, risk taking may be op-

timal even if the expected payo↵ is negative. The rationale is that investing

in the risky asset enables the individual to have a larger range of possible

anticipated expected payo↵s and possibly a higher welfare.

Third, the agents exhibit preference for skewed returns as in Brunner-

meier et al. (2007): a positive demand for a skewed asset enables the agent

to savor more for a given level of risk than the opposite demand. The last

two results may explain the popularity of lottery games (Thaler and Ziemba,

1988) despite their negative expected returns and the underperformance of

lottery-type stocks (Kumar, 2009, Bali et al., 2011): gambling enables to

dream. This taste for lottery-type stocks and for extreme values is also a
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possible explanation for portfolio under-diversification (Mitton and Vorkink,

2007).

Fourth, the allocation in the risky asset may increase with the weight

on savoring, i.e. with the intensity of anticipatory feeling, while in GM, the

constant bounds assumption had the surprising implication that the more

the agent savors the less risk he takes. In our revisited model, the agent

increases instead his allocation in the risky asset to increase in turn the

range of possible anticipated expected payo↵s to eventually be able to reach

higher welfare.

Finally, we argue that our revisited model provides a suitable framework

to think of simultaneous demand for insurance and lotteries, a puzzle pointed

out by Friedman and Savage (1948). Consistent with Lopes (1987) theory of

hope and fear and Shefrin and Statman (2000) behavioral portfolio theory,

our model explains the coexistence of insurance and lottery demand with

the fear of disappointment and the desire to savor.

In the next section, we present the model, then in Section 3 we analyze

its properties. Proofs are provided in the Appendix.

2 The Model

We first present our model, that is directly derived from GM, then analyze

its relevance and detail the di↵erences with the original model.

2.1 Our decision criterion and its application to portfolio

choice

The agent faces a risky payo↵ c̃, described by its (objective) probability

distribution Q over the real line. The agent can extract, at date 0, satis-

faction from anticipatory feelings. As in Brunnermeier and Parker (2005),

the agent can choose a subjective probability distribution in the set P of
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all probability distributions that are absolutely continuous with respect to

Q. The subjective probabilities are chosen absolutely continuous to reflect

the fact that “in order to believe that something is possible, then it must

be possible” (Brunnermeier and Parker, 2005). The agent then enjoys at

date 0 the subjectively expected future utility of the risky payo↵ c̃. This

satisfaction from anticipatory feelings comes at the cost of experiencing,

at date 1, disappointment. Disappointment is measured with respect to a

reference point y, that we will call the anticipated expected payo↵. For a

given realization c of c̃, the agent enjoys at date 1 the satisfaction U (c, y),

where U is a bidimensional utility function increasing and concave in its

first argument, i.e., such that U

c

> 0 and U

cc

< 0 and decreasing in the

second argument, i.e., such that U
y

< 0 in order to reflect disappointment.

The higher the anticipated expected payo↵, the higher the ex-post disap-

pointment2. The intertemporal welfare of the agent for a given choice of

belief P in P is a weighted sum of his ex-ante and ex-post satisfactions

and given by W (P, c̃) = kE

P [U (c̃, y)] + E

Q [U (c̃, y)], where k measures

the intensity of anticipatory feelings. The anticipated expected payo↵ y

is defined as the (subjective) certainty equivalent of the risky payo↵3, i.e.,

U (y, y) = E

P [U (c̃, y)]. We assume that the function v (y) ⌘ U (y, y) is

increasing in y to reflect the fact that receiving a higher payo↵ in line with

expectations increases the agent’s utility4. Since U (y, y) = E

P [U (c̃, y)],

it also means that increasing the anticipated expected payo↵ raises at date

0 the satisfaction extracted from anticipatory feelings. Remark that since

W (P, c) = (k + 1)U (c, c) for a deterministic c, the condition on v is also a

2As underlined by Caplin and Leahy (2001), “have you ever felt disappointed about

an outcome without having experienced prior feelings of hopefulness ?”
3We prove below that our model is also consistent with an anticipated expected payo↵

y defined as the subjective expected payo↵, i.e., y = E

P [c̃] .
4One prefers to consume $6, 000 in line with expectations rather than $5, 000 in line

with expectations.
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monotonicity condition on the welfare function over the set of sure payo↵s,

which is natural.

The agent’s optimization problem (OP) consists in selecting a subjective

belief P in P in order to maximize his welfare W (P, c̃). Letting cinf and

csup denote the essential infimum and essential supremum of c̃ under Q, it

is easy to get that the agent’s optimization problem (OP) is equivalent to

the following optimization problem (Oy)

max
cinfycsup

E

Q [F (c̃, y)] , (1)

where F (c, y) = kU (y, y) + U (c, y) . The agent is then endowed with a

decision criterion, that associates with every risky payo↵ c̃ a welfare level

W (c̃) ⌘ max
cinfycsup E

Q [F (c̃, y)], corresponding to the optimal trade-o↵

between ex-ante savoring and ex-post disappointment.

Note that we would obtain the same decision criterion if we consid-

ered the (subjective) expected value of the risky payo↵ as the reference

point, instead of the certainty equivalent; indeed, the optimization prob-

lem max
P2P kU

�
E

P [c̃] , EP [c̃]
�
+ E

Q

⇥
U

�
c̃, E

P [c̃]
�⇤

also is equivalent to

the optimization problem (Oy) . This means that our model is consistent

with models of disappointment that adopt the certainty equivalent as refer-

ence point, as in Gul (1991), as well as with models that adopt the expected

payo↵ as the reference point as in Bell (1985) and Loomes and Sugden

(1986). Note also that we would obtain analogous results if we considered

the more general optimization problem max
cinfycsup kv(y) +E

Q [U (c̃, y)]

for a general increasing function5 v such that F is concave in y.

Let us now consider the standard portfolio choice problem with such a

decision criterion. The agent has some initial wealth z at date 0, that can

be invested in a riskless asset, whose return between date 0 and date 1 is

normalized to one, and in a risky asset, whose excess return is described

5In particular this permits to consider di↵erent date 0 and date 1 utility functions.
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by a random variable ex, with probability distribution Q. When the agent

invests a level ↵ of his wealth in the risky asset, then he faces the risky

payo↵ c̃

↵

= (z + ↵x̃) and, by (1), his intertemporal welfare is given by

W (c̃
↵

) = max(c↵)infy(c↵)sup
E

Q [F (c̃
↵

, y)]. The agent’s portfolio choice

problem then consists in choosing the level ↵⇤ of wealth invested in the

risky asset in order to maximize his intertemporal welfare, i.e. such that

↵

⇤ = argmax
↵

W (c̃
↵

).

In the remainder of the paper, and as in GM, we make the regularity

assumption that the function F (c, y) is concave in y. The following first-

order condition is then necessary and su�cient to determine the optimal

anticipated expected payo↵ y

⇤

E

Q [F
y

(c̃, y)] = kv

0 (y) + E

Q [U
y

(c̃, y)]

8
>>>>><

>>>>>:

 0 if y

⇤ = cinf ,

= 0 if y

⇤ 2 (cinf , csup) ,

� 0 if y

⇤ = csup.

(2)

We shall repeatedly consider the additive habit formation specification

developed by Constantinides (1990), U(c, y) = u(c � ⌘y), for an increasing

and concave function u and a positive scalar ⌘ < 1. It is easy to verify that

this bidimensional function satisfies all the above regularity assumptions.

2.2 Our model vs. GM model

Let us be clear about the distinction between the seminal model of GM and

our extended model and about the relevance of our modifications. GM fix a

finite set of possible payo↵s C = {c1 < c2 < ... < c

S

} and provide a decision

criterion for the set S
C

of simple lotteries, whose support is in C. A lottery

Q in S
C

is described by a vector of probabilities (q1, q2, ..., qS) with q

i

� 0

and
P

S

i=1 qi = 1. For any lottery Q in S
C

, the agent’s welfare W (Q) is given

by W (Q) = max
c1ycS kU (y, y)+

P
S

s=1 qsU (c
s

, y) . The welfare level of Q

does not depend upon its support but depends on C (through c1 and c

S

).
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Notice the di↵erence with our decision criterion where the bounds are given

by cinf{i;qi>0} and csup{i;qi>0}. In fact, the agent in GM model can choose

a subjective probability that is singular with respect to the objective one6.

As far as the portfolio choice problem is concerned, GM impose exogenous

bounds yinf and ysup on anticipated expected payo↵s and these bounds are

the same for all payo↵s c̃
↵

= z + ↵x̃, independently of ↵.

A lottery c̃ is often directly described by payo↵s and associated proba-

bilities without formally introducing first a set C of possible payo↵s. For

instance, a lottery c̃ can be described as paying 100 with probability 1
/2

and 200 with probability 1
/2 and the set of possible payo↵s is derived from

this description and given by C = {100, 200}. If we now allow, as GM,

for 0-probabilities, the set C is non unique; the lottery c̃ can be described

by the vector
�
1
2 ,

1
2

�
of probabilities over C = {100, 200} or by the vec-

tor
�
1
2 ,

1
2 , 0

�
over C2 = {100, 200, 1000} or by the vector

�
0, 12 ,

1
2 , 0

�
over

C3 = {c1 < 100 < 200 < c4} for any choice of {c1 < 100 < 200 < c4}, etc.
Each (arbitrary) choice of the set of possible payo↵s corresponds to a di↵er-

ent frame, to a possibly di↵erent optimal anticipated expected payo↵, hence

to a di↵erent decision criterion. In GM, the welfare level of a lottery changes

with the frame. In our setting, a unique welfare level is associated with a

lottery, when defined by its support and a probability distribution on this

support.

In our model, when there is no uncertainty, the anticipated expected

payo↵ is equal to the sure payo↵. We think that this feature is reasonable

since if there is no uncertainty, then there is nothing to dream or to be

disappointed about7. More generally, in our setting, as in Brunnermeier

6whereas the agent in our model is constrained to choose a probability that is absolutely

continuous with respect to the objective one.
7This is the case in GM model only if Fy(x, x) = 0 for all x, or if the set of possible pay-

o↵s is reduced to a singleton, namely the sure payo↵. For the additive habit specification,

Fy(x, x) = 0 for all x is satisfied only if k = ⌘
1�⌘ .
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and Parker (2005), the anticipated expected payo↵ belongs to the (convex

hull of the) support of the objective lottery8. For example, in the case of a

lottery yielding 1 or 2 with equiprobability, in our extended model, an agent

can believe that he will win 1 or that he will win 2 or that he will win on

average any value between 1 and 2 but, unlike in GM, he cannot believe

that he will win some value outside [1, 2].

In fact, in the case where the support of the objective distribution of the

lottery Q under consideration coincides with the set C of possible payo↵s

in GM, then c1 = cinf{i;qi>0} and c

S

= csup{i;qi>0}, and the welfare level of

Q in GM coincides with its welfare level in our extended model. But then

GM model only permits to compare lotteries with the same support. Our

decision criterion can then be seen as an extension of GM decision criterion

to lotteries with di↵erent supports. In the case where the set C in GM

and the support of the objective distribution do not coincide, the model

presented here is not exactly an extension but rather a modification of GM,

since it does not lead to the same welfare levels. But we prefer to present

it as an extension since the main ingredient of our model, i.e., a trade-o↵

between ex-ante savoring and ex-post disappointment, is due to GM.

As far as the portfolio choice problem is concerned, in our model, if an

agent does not invest in the risky asset, then there is nothing to dream or to

be disappointed about and the anticipated expected payo↵ is equal to the

sure payo↵ z: the individual cannot extract anticipatory feelings without

investing in the risky asset. More precisely, when ↵ = 0, the only possible

8“in order to believe that something is possible, it must be possible.[...] For example,

consider an agent choosing to buy a lottery ticket. The states of the world are the possible

numbers of the winning ticket. An agent can believe that a given number will win the

lottery. But the agent cannot believe in the nonexistent state that she will win the lottery

if she does not hold the lottery ticket or even if there is no lottery. Note that it is possible

for the agent to believe that a possible event is impossible”, Brunnermeier and Parker

(2005).
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anticipated expected payo↵ is y

⇤(0) = z, whereas in GM, the agent can

choose any anticipated expected payo↵ in [yinf , ysup] , even though he is sure

to get z: the individual can savor a high anticipated expected payo↵ even

if he does not invest in the risky asset, and is hence sure to keep the same

wealth z. More generally, in our model, the level of investment modifies the

range of possible realizations hence of possible anticipated expected payo↵s.

3 The Conclusions

Our extended model leads to new conclusions and interesting insights.

3.1 Comparative statics

3.1.1 Optimal anticipated expected payo↵s.

First, it is easy to show, exactly as in GM, that an increase in the intensity

of anticipatory feelings weakly increases the optimal anticipated expected

payo↵, i.e. @y

⇤

@k

� 0. As intuition suggests, when the intensity of anticipatory

feelings increases, the agent can get more benefits from his dreams and biases

his beliefs towards more optimism.

Most results in GM about the impact of stochastic dominance on the

optimal anticipated expected payo↵ are not valid anymore in our setting.

Detailed stylized counterexamples can be found in Appendix A, but the

main idea is the following: in our extended model, modifying the support

of the objective distribution changes the range of the possible anticipated

expected payo↵s, and may authorize anticipated expected payo↵s which are

more favorable in terms of the savoring and disappointment trade-o↵. The

only result that remains valid is the following.

Proposition 3.1. If U
y

is increasing in the payo↵ c, then any FSD domi-

nated shift in the probability distribution Q weakly reduces the optimal an-

ticipated expected payo↵ y

⇤.
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The condition U

yc

> 0 means that the agent is disappointment averse.

Notice that for the habit formation specification U(c, y) = u(c � ⌘y), we

always have U

yc

> 0.

3.1.2 Welfare.

GM show that any SSD dominated shift (and in particular, any FSD dom-

inated shift) in the probability distribution Q weakly reduces the agent’s

intertemporal welfare (Proposition 5). In our setting, in the absence of ad-

ditional condition, the impact of an FSD dominated shift on welfare is am-

biguous9. As just seen, modifying the support of the objective distribution

may authorize more favorable trade-o↵s between savoring and disappoint-

ment, and then lead to higher welfare.

The simplest forms of FSD dominated shifts are given by the shift from

the binary lottery L = ({x1, x2}, (p, 1� p)) with x1 < x2 to the sure payo↵

x1 or by the shift from the sure payo↵ x2 to the lottery L. Gneezy et al.

(2006) define as the internality axiom for decision models the fact that for

any binary lottery these two simple shifts reduce welfare. Equivalently, this

axiom imposes that for any binary lottery, the welfare level associated to the

lottery ranges between the welfare level of its lowest and highest outcomes.

Note that, as underlined by Gneezy et al. (2006), disappointment models

permit violations of the internality requirement. This means that even with

this simplest form of FSD, an additional condition is needed for our decision

criterion. The following result shows that the internality requirement is

equivalent to the condition F

y

(x, x) � 0 for all x. Moreover, it also shows

that this condition guarantees that our decision criterion is consistent with

FSD shifts.

Proposition 3.2. The three following conditions are equivalent:

9An example of an FSD dominated shift leading to a decrease in welfare can be found

in Appendix A (Example 4).
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1. The decision criterion W satisfies the internality requirement.

2. For all x, F
y

(x, x) � 0.

3. Any FSD dominated shift in the probability distribution Q weakly re-

duces the agent’s intertemporal welfare.

The condition F

y

(x, x) � 0 for all x is a condition on the relative weights

of savoring and disappointment. It amounts to assuming that when the

anticipated expected payo↵ and the payo↵ are in line, the decrease in ex-

ante utility induced by a decrease in the anticipated expected payo↵ - due to

lower anticipatory feelings - is greater than the increase in ex-post utility -

due to lower disappointment. A slight decrease10 in the anticipated expected

payo↵ then induces a decrease in intertemporal welfare. Since, as underlined

above, pure models of disappointment violate the internality requirement,

our condition ensures that the weight on savoring is high enough compared

to the weight on disappointment to induce the agent to bias his beliefs

upwards, when the anticipated expected payo↵ and the actual payo↵ are in

line. For the habit formation specification U(c, y) = u(c�⌘y), the additional

condition F

y

(x, x) � 0 for all x is satisfied if and only if k � ⌘

1�⌘

.

Finally, we prove in Table 1 in the Appendix that for some specifications,

our model, as GM model, can help explain Allais paradox.

3.2 Positive demand for assets with negative expected return

The following proposition shows that the agent may take nonzero positions

on zero mean risk assets in contrast with Proposition 8 of GM and in contrast

with the standard expected utility model. As previously, the intuition is the

10This local property is also satisfied at the global level and slight decreases might be

replaced by general decreases. Indeed, since F is concave in y, the condition Fy(x, x) � 0

for all x is equivalent to the fact that the function y 7! F (x, y) is nondecreasing on

{y  x}.
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following: in our setting, the presence of risk permits a larger range of

possible anticipated expected payo↵s hence possibly higher savoring or less

disappointment compensating for risk aversion.

Proposition 3.3. Let x̃ be a bounded, nonzero, zero-mean risk and let z

denote the agent’s initial wealth. If F
y

(z, z) 6= 0, then the optimal investment

↵

⇤ in the risky asset x̃ is nonzero.

This proposition shows that there are zero mean risks for which the

optimal demand is positive (even if it means changing x̃ into �x̃). Slight

perturbations of x̃ or �x̃ would then permit to construct negative mean

risks for which the optimal demand is positive. Note that State lotteries

typically have a negative average payo↵. In our framework, the positive

demand for such lotteries is rationalized by the savoring of favorable future

prospects. Given the equivalence between portfolio choice and insurance

demand problems, Proposition 3.3 also shows that full insurance is not op-

timal for actuarially fair insurance when F

y

(z, z) 6= 0. More generally, the

proposition implies that risky prospects might be desirable. This explains

why there is no systematic e↵ect of SSD shifts on welfare in our setting (see

Example 3, Appendix A).

For the habit formation specification U(c, y) = u(c � ⌘y), we have

F

y

(z, z) 6= 0 for all z if and only if k 6= ⌘

1�⌘

. Under this assumption,

Proposition 3.3 applies for all possible initial wealth levels, and the agent

might then invest in a risky asset with a negative expected return. For

example, for k >

⌘

1�⌘

and E

Q [x̃] < 0, we can see, using the proof of Propo-

sition 3.3, that, if shortsales are not allowed, the optimal investment level

↵

⇤ is positive as soon as xsup > � E

Q[ex]
k(1�⌘)�⌘

or in other words, as soon as the

expected loss is moderate relative to the maximum possible gain. This is

typically the case with State lotteries for which the expected gain is nega-

tive, shortsales are not allowed and the maximum possible gain is high. Note

that the focus on the maximum possible gain is consistent with Cook and
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Clotfelter (1993), who document that per capita lottery sales increase with

the population base: indeed a higher possible jackpot makes higher dreams

possible.

3.3 Under-diversification

An interesting corollary of Proposition 3.3 is the possible preference for

under-diversified portfolios. Indeed, let us consider a financial market with

several assets and with a zero idiosyncratic risk. A perfectly diversified port-

folio would then be non-risky. Let us normalize its return to zero. Proposi-

tion 3.3 implies that when facing the perfectly diversified portfolio and any

other under-diversified portfolio with zero average return, an agent with a

total wealth z and such that F
y

(z, z) 6= 0 would choose to invest a nonzero

fraction of his wealth in the under-diversified portfolio leading to an under-

diversified overall portfolio, while a classical expected utility agent would

choose to invest his whole wealth in the perfectly diversified portfolio.

Under-diversified portfolio holdings of individual investors have been

documented for instance by Mitton and Vorkink (2007) and Goetzmann

and Kumar (2008); they find that under-diversified portfolio holdings are

concentrated in stocks with high idiosyncratic volatility and high skewness,

i.e. stocks with maximum upside potential. This is consistent with our

model that predicts that agents under-diversify in order to savor the upside

potential.

3.4 Binary risk and preference for skewed returns

In this section, we assume that U (c, y) = ln (c� ⌘y) and that x̃ is a binary

risk.

The next proposition solves the portfolio choice problem for general zero-

mean binary risks and shows a preference for skewed returns. This is consis-

tent with, e.g. Mitton and Vorkink (2007), who find that “investors sacrifice
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mean variance e�ciency for higher skewness exposure”.

Proposition 3.4. Let z denote the agent’s initial wealth. Suppose that

U (c, y) = ln (c� ⌘y) for 0 < ⌘ < 1, and that the excess return of the risky

asset has a zero mean and yields xsup > 0 with probability ⇡ and xinf < 0 with

probability 1� ⇡. For ⇡  1
2 (resp. ⇡ � 1

2 ), the optimal investment level is

given by ↵

⇤ ⌘ ↵1 = k(1�⌘)�⌘

(k+1)(⌘xsup�xinf)
z (resp. ↵

⇤ ⌘ ↵2 = � k(1�⌘)�⌘

(k+1)(xsup�⌘xinf)
z),

with y (↵1) =
k+⇡

(k+1)(⇡+⌘(1�⇡))z (resp. y (↵2) =
k+1�⇡

(k+1)(1�⇡+⌘⇡)z).

In particular, it is optimal not to invest in the zero mean return portfolio,

i.e. ↵⇤ = 0, if and only if k = ⌘

1�⌘

; in this case, y⇤ = z. In the general case,

the optimal investment is nonzero. Note that we only need to consider one

of the two cases ⇡  1
2 or ⇡ � 1

2 since they are symmetric.

The case ⇡  1
2 corresponds to a positively skewed distribution of payo↵s,

hence to a positively skewed range of values for the anticipated expected

payo↵. When the intensity of anticipatory feelings is high enough relative

to the intensity of disappointment (k >

⌘

1�⌘

), then the positive skewness

enables the agent to dream. In order to savor these high possible anticipated

expected payo↵s at date 0, the agent has a positive optimal demand ↵

⇤ =

↵1 = k(1�⌘)�⌘

(k+1)(⌘xsup�xinf)
z > 0 and an optimistic optimal subjective belief y⇤ =

y (↵1) = (c
↵1)sup = z + ↵1xsup. When the intensity of disappointment is

high enough relative to the intensity of anticipatory feelings ( ⌘

1�⌘

> k), then

the negative skewness of (�x̃) enables the agent to profit from elation. The

agent has then a negative demand of x̃ (or equivalently a positive demand of

the negatively skewed risky payo↵ �x̃) with ↵

⇤ = ↵1 =
k(1�⌘)�⌘

(k+1)(⌘xsup�xinf)
z < 0

and a pessimistic optimal belief y⇤ = y (↵1) = (c�↵1)inf = z � ↵1 (�x)inf in

order to benefit from elation at date 1. We retrieve the fact that depending

on the relative intensity of disappointment and anticipatory feelings, the

agent’s optimal belief can be pessimistic or optimistic.

Moreover, it is easy to get that @↵1
@k

> 0 and @↵1
@⌘

< 0, which means that

the optimal investment in a positively skewed asset increases with k and

16



decreases with ⌘. As intuition suggests, a higher intensity of anticipatory

feelings, which, as seen in Section 3.1 is associated with more optimism,

leads to a higher position in a positively skewed risky asset and a higher

intensity of disappointment reduces the level of investment in the positively

skewed risky asset. Here again, the implications of our model di↵er from

those of GM’s model, since GM find that, for the additive habit specifi-

cation with u DARA, the optimal investment in the risky asset decreases

with k (Proposition 9.1), and that the optimal investment in the risky asset

decreases with (resp. increases with, is independent of) ⌘ if relative risk

aversion is larger than (smaller than, equal to) 1 (Proposition 9.2).

Figure 1 illustrates Proposition 3.4. The top graph represents the welfare

W (↵) as a function of the investment in a symmetric binary risk asset. Since

the risk is symmetric, there are two symmetric possible values for the optimal

portfolio ↵

⇤ yielding the same welfare. Note that the welfare function is not

globally concave in ↵. When the return is positively skewed (second graph),

the welfare still has two local maxima but only the positive one is a global

maximum. The positive demand for the risky asset yields higher welfare

because the maximum return xsup is higher (in absolute value) than the

minimum return xinf . Therefore, a positive demand for the asset enables

the agent to savor more for a given level of risk than the opposite demand.

The third graph represents the symmetric situation with negatively skewed

returns.

Figure 2 represents W (↵) and illustrates the impact of k in a symmetric

returns framework. For k = 1 (which corresponds, in the example, to ⌘

1�⌘

)

the optimal demand is zero. When k increases, zero becomes a local mini-

mum of the welfare function and the two symmetric maxima go away from

zero.
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A Stylized counterexamples for comparative stat-

ics results

Example 1: FSD and the optimal anticipated expected payo↵.

A utility function such that U

cy

< 0 for which there is an FSD dominated

shift that decreases the optimal anticipated expected payo↵ y

⇤
.

Let U be defined by U(c, y) = c � ⌘y � 1
2�(c + ⌘y)2 on [0, 1] ⇥ [0, 1]

with � = 4
19 and ⌘ = 1

2 . We take k = 2, Q1
��

1
2

 �
= Q

1 ({1}) = 1
2 and

Q

2 ({0}) = Q

2
��

1
2

 �
= 1

2 . We have Q

1 �
FSD

Q

2 and y

2 = y

⇤ �
Q

2
�
=

1
2 � 1

38 <

1
2 = y

⇤ �
Q

1
�
= y

1
.

Example 2: Increases in risk and the optimal anticipated expected

payo↵.

2a. A utility function such that U

ccy

< 0 and for which there is an in-

crease in risk in the sense of Rothschild-Stiglitz that increases the optimal

anticipated expected payo↵ y

⇤.

Let U be defined by U(c, y) = ln(c� 1
2y) on

⇥
9
10 ,

11
10

⇤⇥ ⇥
9
10 ,

11
10

⇤
. We take

k = 3, Q1 and Q

2 such that Q1 ({1}) = 1 and Q

2
��

9
10

 �
= Q

2
��

11
10

 �
= 1

2 .

The distribution Q

2 is more risky than Q

1 in the sense of Rothschild-Stiglitz

and we have y

2 = y

⇤ �
Q

2
�
= 11

10 > 1 = y

⇤ �
Q

1
�
= y

1
.

2b. A utility function such that U

ccy

> 0 and for which there exists an

increase in risk in the sense of Rothschild-Stiglitz that decreases the optimal

anticipated expected payo↵ y

⇤.

Let U be defined by U(c, y) = c� 1
2y� 1

4(c� 1
2y)

2+ 1
86(c+

1
2y)

3 on
⇥
9
10 ,

11
10

⇤⇥
⇥
9
10 ,

11
10

⇤
. We take k = 1

2 , Q
1 ({1}) = 1 and Q

2
��

9
10

 �
= Q

2
��

11
10

 �
= 1

2 .

The distribution Q

2 is more risky than Q

1 in the sense of Rothschild-Stiglitz

and we have y

2 = y

⇤ �
Q

2
�
= 9

10 < 1 = y

⇤ �
Q

1
�
= y

1
.
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Example 3: SSD and welfare.

A SSD dominated shift in the probability distribution Q that increases the

intertemporal welfare.

Take the same utility function and the same distributions as in 2a. We

check that W (Q1) < W (Q2).

Example 4: FSD and welfare.

An FSD dominated shift in the probability distribution Q that increases in-

tertemporal welfare.

Let U be defined by U(c, y) = ln(c� 1
2y) on

⇥
9
10 , 1

⇤⇥⇥
9
10 , 1

⇤
. We take k =

1
2 , Q

1 ({1}) = 1 and Q

2
��

9
10

 �
= 1�Q

2 ({1}) = 0.01. We have Q1 ⌫
FSD

Q

2

and we check that W (Q1) < W (Q2).

B Proofs

Proof of Proposition 3.1.

Let Q

1 ⌫
FSD

Q

2
. For i = 1, 2, we denote by y

i, c

Q

i

inf and c

Q

i

sup the op-

timal anticipated expected payo↵, the essential infimum and the essen-

tial supremum under Q

i. Since U

cy

> 0, we have F

cy

> 0 and then

E

Q

1 ⇥
F

y

(ec, y1)
⇤ � E

Q

2 ⇥
F

y

(ec, y1)
⇤
. Furthermore, FSD shifts the support to

lower payo↵s that is, cQ
1

sup � c

Q

2

sup and c

Q

1

inf � c

Q

2

inf . The domain over which

E

Q

2
[F

y

(ec, y)] is maximized intersects then
��1, y

1
⇤
. If EQ

1 ⇥
F

y

(ec, y1)
⇤  0,

then E

Q

2 ⇥
F

y

(ec, y1)
⇤  0 and since F is concave in y, we have y

2  y

1
. If

E

Q

1 ⇥
F

y

(ec, y1)
⇤
> 0, then y

1 corresponds to the highest possible payo↵ under

Q

1 and we necessarily have y

2  y

1
.

Proof of Proposition 3.2.

(2) ) (1): Consider the lottery L = ({x1, x2}, (p, 1� p)) with x1 < x2 and

denote by y

⇤ the optimal anticipated expected payo↵ of the lottery. We
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have W (x1) = F (x1, x1)  pF (x1, x1)+(1�p)F (x2, x1)  pF (x1, y⇤)+(1�
p)F (x2, y⇤) = W (L), where the first inequality is due to F

c

> 0 and the

second inequality comes from the optimality of y⇤. The inequality W (x1) 
W (L) is then always satisfied.

Since F

yy

< 0, F
y

(x2, x2) � 0 implies that F

y

(x2, x) � F

y

(x2, x2) � 0

for x  x2 and then F (x2, x)  F (x2, x2) for all x  x2. Thus, we have

W (L) = pF (x1, y⇤) + (1 � p)F (x2, y⇤)  F (x2, y⇤)  F (x2, x2) = W (x2),

where the first inequality follows from F

c

> 0.

(1) ) (2): Assume that there exist x2 and y < x2 with F (x2, y) >

F (x2, x2). Let x1 < y and consider the lottery l = ({x1, x2}, (p, 1 � p))

with optimal anticipated expected payo↵ denoted by y

l. We have W (l) =

pF (x1, yl) + (1� p)F (x2, yl), hence by optimality, W (l) � pF (x1, y) + (1�
p)F (x2, y). Choosing p small enough, we have W (l) > F (x2, x2) = W (x2),

which leads to a contradiction. For all x2, we then have F (x2, y)  F (x2, x2)

for all y  x2, hence F

y

(x2, x2) � 0.

(2) ) (3): Let Q

1 ⌫
FSD

Q

2 and let y

1 and y

2 denote the optimal

anticipated expected payo↵s respectively associated to Q

1 and Q

2. Since

F

c

> 0, we have W (Q2) = E

Q

2 ⇥
F (ec, y2)

⇤  E

Q

1 ⇥
F (ec, y2)

⇤
. If y2 � c

Q

1

inf

then y

2 2 [cQ
1

inf , c
Q

1

sup] (see the proof of Proposition 3.1) and, by optimality,

we have E

Q

1 ⇥
F (ec, y2)

⇤  E

Q

1 ⇥
F (ec, y1)

⇤
= W (Q1). If y2 < c

Q

1

inf , we have,

for all c in the support of Q1, F (c, y2)  F (c, cQ
1

inf ) since F

y

(x, x) � 0 for all

x implies that F (c, y) is increasing in y for y  c (see above). Therefore,

E

Q

1
[F (ec, y2)]  E

Q

1
[F (ec, cQ

1

inf )]  E

Q

1
[F (ec, y1)] = W (Q1), where the last

inequality is due to the optimality of y1.

(3) ) (1): immediate.

Proof of Proposition 3.3.

Assume that F

y

(z, z) > 0. For ↵ > 0 and su�ciently small, y⇤(↵) is suf-

ficiently close to z to have kv

0(y⇤(↵)) + E

Q [U
y

(c̃
↵

, y

⇤(↵)] > 0. This im-

22



plies that y

⇤(↵) = (c
↵

)sup. Hence, for ↵ > 0 su�ciently small, W
↵

(↵) =

E [x̃U
c

(c̃
↵

, y

⇤(↵)) + xsupFy

(c̃
↵

, y

⇤(↵))] and lim
↵!0+ W

↵

(↵) = xsupFy

(z, z) >

0. We prove similarly that lim
↵!0� W

↵

(↵) = xinfFy

(z, z) < 0 and ↵ = 0 is

a local minimum for W (↵). The optimal investment is then nonzero. The

case F

y

(z, z) < 0 is treated similarly.

Proof of Proposition 3.4.

Let us first study the concavity of W and let us assume ↵ > 0 (the case

↵ < 0 is treated similarly).

If (c
↵

)inf < y(↵) < (c
↵

)sup (Regime 1), then by the implicit func-

tion theorem, we have y

0(↵) = � E[x̃Ucy ]
kv

00+E[Ucc]
, and W

↵↵

(↵) = E

⇥
x̃

2
U

cc

⇤
+

y

0(↵)E [x̃U
cy

] , where all functions are taken at y = y(↵) and c̃

↵

. W

↵↵

(↵) is

negative if

kv

00
E

⇥
x̃

2
u

00⇤+ ⌘

2(E [u00]E
⇥
x̃

2
u

00⇤� E [x̃u00]2)

kv

00 + ⌘

2
E [u00]

< 0,

where the derivatives of v (resp. u) are taken at (1�⌘)y(↵) (resp. c̃
↵

�⌘y(↵))

and this inequality is satisfied due to the concavity of u and v and the

Cauchy-Schwarz inequality.

When y(↵) = (c
↵

)sup (Regime 2),W
↵↵

(↵) is given byW
↵↵

(↵) = x

2
sup [kv

00 + EU

yy

]+

2xsupE [x̃U
cy

] + E

⇥
x̃

2
U

cc

⇤
< 0, where all functions are taken at y = (c

↵

)sup

and c = z + ↵x̃. The concavity condition is then given by k(1� ⌘)2u00((1�
⌘)((c

↵

)sup))x2sup+E(x̃�⌘xsup)2u00(z(1�⌘)+↵(x̃�⌘xsup)) < 0, which is au-

tomatically satisfied by concavity of u. The same applies for y(↵) = (c
↵

)inf

(Regime 3).

Finally, note that y(↵) is continuous and so is E

Q [F
y

(c̃
↵

, y(↵))] . This

means that when we switch from Regime 2 to Regime 1 (or from Regime 3

to Regime 1) and conversely, at some b↵ > 0, we have E

Q [F
y

(c̃b↵, y(b↵))] = 0

and W

0(b↵�) = W

0(b↵+) = E [U
c

(c̃b↵, y(b↵))] . Thus, W↵

(↵) is continuous at b↵

and since W is concave at the left and at the right of b↵, it is concave on

23



a neighborhood of b↵. The unique remaining cases correspond to switches

from Regime 2 to Regime 3 and conversely. Since y(↵) is continuous, such

a switch can only occur for ↵ = 0. In conclusion, W is concave on R� and

on R+ but might not be concave at 0.

Let us then consider separately the two following problems max
↵�0,(c↵)infy(c↵)sup k ln((1�

⌘)y)+E [ln(c̃
↵

� ⌘y)], and max
↵0,(c↵)supy(c↵)inf k ln((1�⌘)y)+E [ln(c̃

↵

� ⌘y)].

Let us start with the first one, i.e. ↵ � 0. The objective function is

concave in (↵, y) and the domain {(↵, y) : ↵ � 0, (c
↵

)inf  y  (c
↵

)sup} is

convex. The first-order necessary and su�cient conditions for an interior

solution are then given by k

y

�⌘E

h
1

c̃↵�⌘y

i
= 0, and E

h
ex

c̃↵�⌘y

i
= 0. Deriving

y from the first equation and replacing it in the second equation we obtain

↵ = 0 which is only optimal if k = ⌘/(1� ⌘). Otherwise there is no interior

solution. The same applies for ↵  0.

This means that the solutions of (2) are necessarily such that y⇤ (↵⇤) =

z + ↵

⇤
xsup or y(↵⇤) = z + ↵

⇤
xinf . It su�ces then to solve the two following

problems max
↵

k ln((1�⌘) (z + ↵x))+E [ln((1� ⌘)z + ↵ (ex� ⌘x))] , with x =

xsup or x = xinf , and to compare their values to determine ↵

⇤. We obtain

↵1 = k(1�⌘)�⌘

(k+1)(⌘xsup�xinf)
z and ↵2 = ⌘�k(1�⌘)

(k+1)(x+�⌘x

�)z and W (↵0) � W (↵1) =

(k + ⇡) ln
⇣
(k+⇡)(1�⌘)
⇡(1�⌘)+⌘

⌘
� (k + 1 � ⇡) ln

⇣
(k+1�⇡)(1�⌘)

1�⇡(1�⌘)

⌘
= �(⇡). We check

that �(⇡) is decreasing on [0, 1] with �(1/2) = 0. Consequently, ↵⇤ = ↵1

for ⇡  1
2 and ↵

⇤ = ↵2 for ⇡ � 1
2 .
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Table 1: Allais Paradox

Lottery {0, 1, 5} A1 A2 B1 B2
Q = (q1, q2, q3) (0, 1, 0) (0.01, 0.89, 0.1) (0.9, 0, 0.1) (0.89, 0.11, 0)
Preference A1 � A2 B1 � B2
k = 0.75 y

⇤(Q) 1 0.7744 0 0
W (Q) -0.1728 -0.1790 -0.5502 -0.5513

k = 2 y

⇤(Q) 1 1.0404 0.1989 0.2002
W (Q) -0.2963 -0.3117 -0.9126 -0.9132

The table presents for k equal to 0.75 and 2 the choice of an agent endowed with a

utility function U(c, y) = �(1 + c � y/2)�3
/3 between the lotteries considered in the

Allais paradox. The di↵erent lotteries yield 0 with probability q1, 1 with probability q2

and 5 with probability q3. They di↵er by the values of (q1, q2, q3). The Allais paradox is

explained when A1 � A2 and B1 � B2. This is the case when k remains su�ciently close

to ⌘/(1� ⌘) which is equal to 1 in this example.
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(c) negative skewness

Figure 1: Skewness and welfare

This figure presents the welfare W (↵) as a function of the investment level ↵ for a symmet-

ric (a), positively skewed (b) and negatively skewed (c) binary risk. The utility function

is given by U(c, y) = ln(c � y/2) and k = 2. Initial wealth is given by z = 1. (a) For

xsup = �xinf = 0.2 (and ⇡ = 1/2), the risk is symmetric and there are two optimal invest-

ment levels ↵1 = �↵2 = 0.56. (b) If we maintain xinf = �0.2 and take xsup equal to 0.4

(with ⇡ = 1/3 to keep a zero mean), the optimal investment level is positive and given

by ↵1 = 0.42. (c) If we maintain xsup = 0.2 and take xinf equal to �0.4 (with ⇡ = 2/3 to

keep a zero mean), the optimal investment level is negative and given by ↵2 = �0.42.
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Figure 2: The intensity of anticipatory feelings and welfare

This figure presents the welfare W (↵) as a function of the investment level ↵ for three

di↵erent values of the intensity of anticipatory feelings k and in the case of a zero-mean

symmetric binary risk (xsup = 0.2 and xinf = �0.2). The utility function is given by

U(c, y) = ln(c� y/2). Initial wealth is given by z = 1. For k = 1, the optimal demand is

zero. When k increases, zero becomes a local minimum and the two (symmetric) maxima

go away from zero.
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